\qquad Hour \qquad

Things to remember for success on this assignment:

- Anything in the downward direction you need to make \qquad ($v, \Delta y, a, ~ e t c)$
- If a number comes out negative in a calculation that tells you that the object is
\qquad or \qquad
- The acceleration due to gravity near the Earth's surface is \qquad
- If you throw an object up, what is the speed at the top of its flight? \qquad
- If you throw something straight up and it is in the air for a total of 8 sec, how long did it take to go just up? \qquad
- If you drop an object, what 2 variables do you know automatically? \qquad and \qquad

1. If your car is able to accelerate from $\mathbf{0}$ to $\mathbf{6 0} \mathbf{~ m p h}$ in $\mathbf{3 . 5} \mathbf{~ s e c}$, find your acceleration. ($7.7 \mathrm{~m} / \mathrm{s}^{2}$) HINT: Convert the speed to $\mathrm{m} / \mathrm{sec}$!

G:

U:

E:
b. How far (in meters) would you have traveled in that time? (47 m)

U:
E:
2. You decide to drop something off your roof. If it takes 2.50 sec for it to hit the ground, what is the final velocity? (Hint: It is falling downward, so your velocity will be negative. The acceleration due to gravity is also negative.) $(-24.5 \mathrm{~m} / \mathrm{s})$

G:

U:

E:
b. How far (Δy) will it have fallen during that time? Solve this using two different equations. Make sure you get the same answer for each. (-30.6 m , It is negative because it is falling downward.)

U:

Equation 1:

Equation 2:

\qquad Hour \qquad
DUE \qquad
3. You are traveling at 55 mph and slam on your brakes. If it takes you 46.5 m to come to a stop, what is your rate of deceleration? (Deceleration is just a negative acceleration) ($-6.5 \mathrm{~m} / \mathrm{s}^{2}$)
4. Answer the following questions using the velocity vs. time graph below:

a. Calculate the slope of the line for segment \#1 \qquad
b. What is the car doing during segment \#1? \qquad
c. Calculate the slope of the line for segment \#2 \qquad
d. What is the car doing during segment \#2? \qquad
e. Calculate the AREA under the graph. Show your work! (Make 1 triangle and 1 rectangle!)
f. What are the units of the area under the graph? Be careful! \qquad
g. What does the area under the graph measure? \qquad
h. For segment \#1 find the numbers from the graph: $\mathrm{v}_{\mathrm{i}}=$ \qquad $\mathrm{V}_{\mathrm{f}}=$ \qquad $\Delta t=$ \qquad
i. Calculate the acceleration of segment \#1 using $a=v f-v i / \Delta \dagger$ (It should be the same as b)
j. Use the $\Delta \mathbf{x}=\mathbf{v}_{\mathbf{i}} \Delta \boldsymbol{t}+\mathbf{1 / 2 a \Delta t ^ { 2 }}$ equation to measure the distance traveled during segment \#1 by plugging in numbers from the graph for your variables.

